2-Wire Gas Detector Head

GD-K88Ai

Operating Manual

Part Number: 71-0415
Revision: P3
Released: 5/30/20
Contents

1 Outline of the Product ... 3
1-1. Preface .. 3
1-2. Purpose of Use .. 3
1-3. Definition of DANGER, WARNING, CAUTION, and NOTE .. 3
2 Important Notices on Safety .. 4
2-1. Danger Cases .. 4
2-2. Warning Cases .. 5
2-3. Precautions ... 6
2-4. Operating Precautions .. 6
2-5. Important Information about Explosion-Proof ... 7
3 Product Components ... 9
3-1. Main Unit and Standard Accessories .. 9
3-2. Names and Functions for Each Part ... 10
4 How to Use ... 11
4-1. Before Using the Detector .. 11
4-2. Precautions for Installation Sites .. 11
4-3. Precautions for System Designing .. 12
4-4. How to Install .. 13
4-5. Grounding .. 14
4-6. How to Wire ... 15
4-7. Compatible Cables and Terminal Plate Specifications ... 15
4-8. Wiring Diagrams ... 16
5 How to Operate .. 18
5-1. Preparing for Start-up .. 18
5-2. Basic Operating Procedures ... 18
5-3. Starting the Detector (power-on) ... 19
5-4. Modes ... 20
5-5. Detection Mode ... 21
5-6. User Mode .. 24
5-7. Power-Off ... 27
6 Maintenance .. 28
6-1. Maintenance Intervals and Items .. 28
6-2. Zero Calibration ... 29
6-3. Span Calibration .. 30
6-4. Replacing Parts ... 31
7 Storage, Relocation, and Disposal ... 33
7-1. Procedures to Store the Detector or Leave it for a Long Time ... 33
7-2. Procedures to Relocate the Detector or Use it Again ... 33
7-3. Disposal .. 33
8 Troubleshooting ... 34
9 Product Specifications ... 36
9-1. List of Specifications .. 36
9-2. Detection Principle ... 37
10 Definition of Terms .. 38
11 Parts List ... 39
1 Outline of the Product

1-1. Preface

Thank you for choosing our 2-wire gas detector head GD-K88Ai.
Please check that the model number of the product you purchased is included in the specifications on this manual.

This manual explains how to use the detector and its specifications. It contains information required for using the detector properly. Not only the first-time users but also the users who have already used the product must read and understand the operating manual to enhance the knowledge and experience before using the detector.
When the detector is used in combination with an indicator/alarm unit, read also the operating manual of the indicator/alarm unit.

1-2. Purpose of Use

• This detector is a fixed type gas detector head which detects combustible and toxic gases.
• When the detector detects gas leakage, it outputs a current according to the gas concentration. The indicator/alarm unit indicates the gas concentration and triggers an alarm if a preset concentration level is exceeded.
• The detector is a safety unit, not an analyzer or densitometer which performs quantitative/qualitative analysis/measurement for gases. Please fully understand the features of the detector before using it, so that it can be used properly.

1-3. Definition of DANGER, WARNING, CAUTION, and NOTE

<table>
<thead>
<tr>
<th>DANGER</th>
<th>This message indicates that improper handling may cause serious damage on life, health or assets.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING</td>
<td>This message indicates that improper handling may cause serious damage on health or assets.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>This message indicates that improper handling may cause minor damage on health or assets.</td>
</tr>
<tr>
<td>NOTE</td>
<td>This message indicates advice on handling.</td>
</tr>
</tbody>
</table>
2

Important Notices on Safety

2-1. Danger Cases

DANGER
This detector is the intrinsically safe explosion-proof product with Zener Barrier. However, never attempt to detect a gas over the lower explosive limit.
2-2. Warning Cases

WARNING

- **Power supply**
 Before turning on the detector, always check that the voltage is properly applied.

- **Need of grounding circuit**
 Do not cut the grounding circuit inside or outside the detector or disconnect the wire from the grounding terminal. In both of the cases, the detector will be in danger.

- **Defects in protective functions**
 When seeming defects are found in the protective functions, such as protective grounding, do not start the detector. Before starting the detector, check the protective functions for defects.

- **Grounding Zener Barrier**
 Arrange A type grounding for Zener Barrier.

- **Operation in a gas**
 The detector employs the intrinsically safe explosion-proof structure (Zener Barrier used separately). It can be used in a location where a combustible gas, or steam is present; however, it should be done carefully. Consult RKI before operating the detector in such a location.

- **External connection**
 Before connecting the detector to the external control circuit, securely connect it to a protective grounding circuit.

- **Handling of sensor**
 Do not disassemble the sensor unit because it contains electrolyte. If contact occurs, rinse the area immediately with water.

- **Calibration**
 When performing calibration for the detector, be careful not to lack calibration gases by loosing tubes.

- **Response to gas detection**
 When a gas is detected, it indicates a potentially dangerous situation. Take proper actions based on your judgment.
2-3. Precautions

CAUTION

- Do not use a transceiver near the detector. Radio wave from a transceiver or other radio wave transmitting device near the detector or its cables may disturb readings. If a transceiver or other radio wave transmitting device is used, it must be used in a place where it disturbs nothing.

- To restart the detector, wait for five seconds or longer before switching on detector. Restarting the detector within five seconds may cause errors.

- Careful consideration should be given to instrumentation to maintain safety even when a trouble like disconnection of power/signal cable or unexpected malfunction or failure occurs.

- This is an electrical appliance. Be careful that it may be affected, in rare cases, by power supply noises, static electricity and electromagnetic noises. Before using the detector in an environment with such noises, provide for protective measures against them.

2-4. Operating Precautions

This detector is a gas detector that detects combustible and toxic gases in the air and outputs gas concentration signals.
The gas detector is a safety unit, not an analyzer or densitometer which performs quantitative/qualitative analysis/measurement for gases.
Please fully understand the following points before using it, so that it can be used properly.

1. The detector may be interfered by gases other than the gas to be detected, solvents, vapors etc. Please note that the gas concentration signal may be fluctuated by interference. In addition, it may be fluctuated by environmental (temperature, humidity, etc.) changes in the installation site.

2. The alarm must be set within a range where the performance of the detector can be ensured.
In facilities compliant with the High Pressure Gas Safety Act, an alarm setting below our standard alarm setpoint (threshold limit value) may trigger a false alarm.

3. This is a safety unit, not a control unit.
Use the analog signal output of the detector for an indicator or external recorder.
If these outputs are used to control other units, we shall not be responsible for any malfunctions.

4. Because the contact point of the gas detector sensor is made of porous polymeric membrane, the water repellency of the membrane is deteriorated by solvents, thus causing an electrolyte leak from its inside. Do not use solvents near the detector.
If a solvent is used for unavoidable reasons, attach the recommended filter to the areas such as inlet of the gas detector while using the solvent and for one hour after that.

5. For maintenance of the detector, it must go through a regular maintenance, including replacement and adjustment of the regular replacement parts as specified in the operating manual. In addition, because this is a safety unit, it is recommended that a regular maintenance and a calibration are performed every six months in accordance with the regulations.
2-5. Important Information about Explosion-Proof

The detector is an explosion-proof product. The following provides information about the explosion-proof structure. Understand the information in this section thoroughly before using the detector.

- **Explosion-proof structure and class**
 The detector employs the following explosion-proof structure and class. Use the detector according to the operating environment.

 - **Explosion-proof structure**: Intrinsically safe explosion-proof structure
 - **Explosion-proof class**: ExiaIICT4X
 - **Certificate number**:
 - **Certification body**: Technology Institution of Industrial Safety
 - **Applied standard**: Recommended Practices for Explosion-Protected Electrical Installations in General Industries

Electrical parameter

- Intrinsically safe circuit allowable voltage \((U_i) \): 28 V
- Intrinsically safe circuit allowable current \((I_i) \): 93 mA
- Intrinsically safe circuit allowable power \((P_i) \): 0.65 W
- Internal capacitance \((C_i) \): 586 pF
- Internal inductance \((L_i) \): Negligible value

- **Operating temperatures**: -20 - +50°C (*1)
- **Protective class of case**: IP20 (Water-proof: None/Dust-proof: Up to 12.5 mm foreign solid material protected)
- **Insulation performance**: Meet JIS standard (between the power supply and case, 500 VAC, one minute) under the condition that the capacitor connected to the terminal plate has been removed.

- **System configuration**
 Make up the system as shown below.

```
+ | -
---+---
    |   
    |   
+ | -
```

- **Hazardous location**
- **Non-hazardous location**

Gas detector
Safety maintaining device
Important information about explosion-proof (continued)

- **Power supply**
 Never fail to use the following safety maintaining device (barrier) to maintain explosion-proof performance.

 Ratings to maintain safety
 - Intrinsically safe circuit maximum voltage \((U_o)\) : 28 V
 - Intrinsically safe circuit maximum current \((I_o)\) : 93 mA
 - Intrinsically safe circuit maximum power \((P_o)\) : 0.65 W

 Performance classification and group
 - Performance classification : ia
 - Group : IIC

 Relations between the intrinsically safe circuit allowable inductance \((L_o)\) and intrinsically safe circuit external wire inductance \((L_w)\) and between the intrinsically safe circuit allowable capacitance \((C_o)\) and intrinsically safe circuit external wire capacitance \((C_w)\)
 - Intrinsically safe circuit allowable inductance \((L_o)\) = \((L_w)\) or more
 - Intrinsically safe circuit allowable capacitance \((C_o)\) = 586 pF + \((C_w)\) or more

- **Wiring**
 Determine the cable type to use and laying distance in consideration of the above parameters to maintain explosion-proof performance.
 Perform wiring so that a current or voltage that disturbs intrinsically safe explosion-proof performance of the intrinsically safe circuit is not induced to the circuit due to electromagnetic or electrostatic induction.

- **Battery**
 The detector contains a battery for sensor backup. Observe the followings to maintain explosion-proof performance.

 <Usable battery>
 Only the following battery can be used. Contact RKI if it is difficult to purchase the battery.
 - Type : AAA alkaline dry battery
 - Model : LR03
 - Nominal voltage : 1.5 V
 - Manufacturer : TOSHIBA Corporation

 <Battery Replacement>
 - Turn off the power of the detector before replacing the battery.
 - Never fail to use the dedicated battery storage case.

- **Grounding**
 Never fail to ground the detector (D type grounding).

- **Others**
 Confirm that no combustible gas is present around before opening the door of the unit.
 Never disassemble or modify the unit.

 Manufacturer: RIKEN KEIKI Co., Ltd.
 2-7-6 Azusawa, Itabashi-ku, Tokyo, 174-8744 Japan
 www.rikenkeiki.co.jp

 ***1:** The temperature range to maintain explosion-proof performance
 The temperature range to maintain gas detection performance is 0 to 40°C. (See Specifications)
3 Product Components

3-1. Main Unit and Standard Accessories

<Main Unit>

(1) LCD display
Display the gas concentration. (Used at maintenance)

(2) MODE switch
Switches the mode from the detection mode to maintenance mode. Or exits
the maintenance mode.

(3) SET switch
Used to set the mode during the maintenance mode.

(4)(5) UP/DOWN switch
Used to select an item for each maintenance mode, increase/decrease a
reading in zero adjustment or external output test, etc.

(6) Nameplate
Shows ratings, etc.

<Standard Accessories>
- CF-82 CO sensor filter: Attached when the gas to be detected is CO (carbon monoxide).
3-2. Names and Functions for Each Part

(7) Battery box
Houses the battery for sensor backup.

(8) Power switch
Turns ON/OFF the power of the unit.

(9) Sensor
Detects a gas.

(10) Terminal plate
Connects the power cable.

(11) Grounding terminal
A terminal (M4) to ground the unit.

(12) Cable inlet
An inlet for connected cable.
4
How to Use

4-1. Before Using the Detector

Not only the first-time users but also the users who have already used the alarm system must follow the operating precautions. Ignoring the precautions may damage the alarm system, resulting in inaccurate gas detection.

4-2. Precautions for Installation Sites

CAUTION
- This is a precision device. Because the detector may not provide the specified performance in some places (environments), check the environment in the installation point, and then take appropriate actions if necessary.
- Because the detector plays an important role for safety and disaster prevention, as many units of the detector as needed must be installed in appropriate points. Because points where gases leak and gathering are different depending on the types of gases and the working areas, please decide carefully on installation points and the number of units to be installed.

Do not install the detector in a place with vibrations or shocks.
The detector consists of sensitive electronic parts. The detector must be installed in a stable place without vibrations or shocks and it cannot drop.

Do not install the detector in a place exposed to direct sunlight or sudden changes in the temperature.
When selecting installation points, avoid a place where it is exposed to direct sunlight or radiant heat (infrared rays emitted from a high-temperature object), and where the temperature changes suddenly. Condensation may be formed inside the detector, or the detector cannot adjust to sudden changes in the temperature.

Keep the detector (and its cables) away from noise source devices.
When selecting installation points, avoid a place where high-frequency/high-voltage devices exist.
- Do not place the detector next to a noise source device.
- Do not run cables in parallel or close to each other.

Do not install the detector in a place where maintenance of the detector cannot be performed or where handling the detector involves dangers.
Regular maintenance of the detector must be performed. Do not install the detector in a place where the machinery must be stopped when maintenance is performed in its inside, where parts of the machinery must be removed to perform maintenance, or where the detector cannot be removed because tubes or racks, etc. prevent access to it. Do not install the detector in a place where maintenance involves dangers, for example, near a high-voltage cable.

Do not install the detector in machinery which is not properly grounded.
Before installing the detector in machinery, the machinery must be grounded properly.

Do not install the detector in a place where interference gases exist around it.
The detector must not be installed in a place where interference gases exist around it.
4-3. Precautions for System Designing

CAUTION
An unstable power supply and noise may cause malfunctions or false alarms.
The descriptions in this section must be reflected on the designing of a system using the detector.

Using a stable power supply
The external output and alarm contact of the detector may be activated when the power is turned on, when momentary blackout occurs, or while the system is being stabilized. In such cases, use a UPS (uninterruptible power system), or take appropriate actions on the receiving side.
The detector must be provided with the following power supply.

<table>
<thead>
<tr>
<th>Power supply voltage</th>
<th>15 - 27 VDC (terminal voltage of the main unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowed time of momentary blackout</td>
<td>Approx. 1 msec. (To recover from the momentary blackout for 1 msec. or more, restart the detector.)</td>
</tr>
<tr>
<td>Others</td>
<td>Do not use it with a power supply of large power load or high-frequency noise.</td>
</tr>
<tr>
<td>Example of actions</td>
<td>Example of actions</td>
</tr>
<tr>
<td>To ensure continuous operation and activation, install a UPS, etc. outside the detector.</td>
<td>Use a line filter, etc. to avoid the noise source if necessary.</td>
</tr>
</tbody>
</table>

Heat radiation designing
When the alarm system is installed in a closed instrumentation panel or the like, attach ventilation fans above and below the panel.

Introducing protective measures against lightning
If cables are installed outside the factory/plant, or if internal cables are installed in the same duct as the cables coming from outside the factory/plant, "lightning" will cause problems. Because lightning acts as a large emission source while cables act as a receiving antenna, devices connected to the cables may be damaged.

Lightning cannot be prevented. Cables installed in a metal conduit or under the ground cannot be completely protected from inductive lightning surge caused by lightning. Although complete elimination of disasters caused by lightning is impossible, the following protective measures can be taken.

<table>
<thead>
<tr>
<th>Protection against lightning</th>
<th>Take appropriate measures in accordance with the importance of the facilities and the environment.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Provide protection by a lightning arrester (cable arrester).</td>
</tr>
<tr>
<td></td>
<td>(Although inductive lightning surge can be transmitted through the cable, it is prevented by installing a lightning arrester before the field devices and central processing equipment. For information on how to use a lightning arrester, please contact the manufacturer.)</td>
</tr>
<tr>
<td>Grounding</td>
<td>In addition to lightning, there are more sources of surge noise. To protect units from these noise sources, the units must be grounded.</td>
</tr>
</tbody>
</table>

* The lightning arrester has a circuit to remove a surge voltage which damages field devices, so that signals may be attenuated.
Before installing a lightning arrester, verify that it works properly.
4-4. How to Install

A certain maintenance space needs to be secured in advance to allow the maintenance personnel to safely and properly perform maintenance of the gas detector function and performance. Be sure to secure this space during construction planning or installation.

(1) Mount the main unit on the wall.
(2) Insert screws to the upper and lower fixing holes of the main unit and tighten them. (Use M5 screws.)

CAUTION

Check that the main unit is mounted securely on the wall. If not, the main unit may fall off and cause unexpected injury or damage to the unit.

Do not install the detector in a place where maintenance of the detector cannot be performed or where handling the detector involves dangers.

Regular maintenance of the detector must be performed. Do not install the detector in a place where the machinery must be stopped when maintenance is performed in its inside, where parts of the machinery must be removed to perform maintenance, or where the detector cannot be removed because tubes or racks prevent access to it. Do not install the detector in a place where maintenance involves dangers, for example, near a high-voltage cable.
4-5. Grounding

Connect the detector to your grounding terminal with the internal or external terminal.

WARNING

Before turning on the detector, never fail to connect it to a grounding terminal.

For stable operation of the detector and safety, it must be connected to a grounding terminal. Do not connect the grounding wire to a gas pipe. The grounding must be made as D type grounding (below 100 Ω of grounding resistance).

WARNING

Perform A type grounding when Zener Barrier is connected for explosion-proof specification.
4-6. How to Wire

CAUTION
- Be careful not to damage the internal electronic circuit when wiring.
- The connected cables must not be installed together with the motor power cables, etc.
- When stranded wires are used, prevent wires from contacting each other.

4-7. Compatible Cables and Terminal Plate Specifications

<Recommended Cables>
Use CVVS 1.25 sq 2-core single or stranded wire.

<Specifications of Terminal Plate>
- Rated voltage: 250 VAC
- Rated current: 20 A

<Supply Voltage>
The supply voltage is normally 24 VDC. However, the voltage at the terminal plate of the detector becomes lower than the source voltage, depending on the connected safety maintaining device (barrier), type and length of the cable used. It may also vary with the signal current value (4 to 20 mA). When wiring the detector, check the following to make sure that the voltage at the terminal plate is appropriate. The detector provides stable operation within the power voltage range of 15 to 27 VDC.
4-8. Wiring Diagrams

<Indicator, DCS, PLC, etc. (non-explosion proof system)>

Host system (DCS, PLC) Non-hazardous location

<Zener Barrier to Indicator, DCS, PLC, etc.>

Upper unit (DCS, PLC) Zener Barrier

Non-hazardous location Hazardous location

A type grounding

GD-K88Ai detector

GD-K88Ai detector
<Zener Barrier to EC-5002/EC-592>

EC-5002/EC-592

Non-hazardous location

Hazardous location

Short circuit between (3) and (4).

Zener Barrier

A type grounding

1 2

GD-K88Ai detector

<Insulating Barrier to Indicator, DCS, PLC, etc.>

Upper unit (DCS, PLC)

Insulating barrier

Non-hazardous location

Hazardous location

1 2

GD-K88Ai detector
5
How to Operate

5-1. Preparing for Start-up

Before connecting a power supply, read and understand the following precautions. Ignoring these precautions may cause an electric shock or damage the detector.

- Check that the detector is installed properly.
- Check that the detector is grounded.
- Check that the external wiring is done properly.
- Check that the power supply voltage meets the specifications.
- The external output may be fluctuated during adjustment. Take an appropriate measure to avoid the influence on the gas monitoring system.
- Make sure to use a fuse with the specified ratings to prevent fire.

5-2. Basic Operating Procedures

Normally, the detection mode is activated after the power is turned on.

```
Preparation for start-up

Power-on

Initial clear (approx. 25 seconds)

Detection mode

MODE switch (hold down for approx. 3 seconds)

User Mode
  • Zero adjustment
  • Maintenance Mode access
```
5-3. Starting the Detector (power-on)

- Before supplying power to the detector, check that the preparation for start-up is completed.
- Turn on the power switch located on the left side of the power terminal plate.

<Initial Clear (approx. 25 seconds)>
System check of the unit
External output: 4.0 mA

CAUTION
- Do not turn off the detector during the initial clear. The detector is reading the internal memory during the initial clear.
- If the detector is installed newly or the new sensor is replaced, the sensor must be warmed up for a specified period which is determined depending on the type of the sensor after the detector is started.
- After the warm-up is completed, perform a calibration.
5-4. Modes

Details on each mode are provided as follows.

CAUTION
- Do not change the settings if not necessary. Changing the settings without understanding the specifications may cause malfunctions.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Item</th>
<th>LED display</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection mode</td>
<td>-</td>
<td>Gas</td>
<td>Normal state</td>
</tr>
<tr>
<td></td>
<td></td>
<td>concentration</td>
<td></td>
</tr>
<tr>
<td>ROM/SUM display</td>
<td>1-0</td>
<td>Display</td>
<td>the program version and others. This is not used by the user.</td>
</tr>
<tr>
<td>Setting display</td>
<td>1-2</td>
<td>Display</td>
<td>various setting values.</td>
</tr>
<tr>
<td>Maintenance mode</td>
<td>1-3</td>
<td>Access</td>
<td>maintenance mode.</td>
</tr>
<tr>
<td>Test mode</td>
<td>2-0</td>
<td>Perform</td>
<td>various tests.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-0-0 Gas Test</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-0-1 Alarm Test</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-0-2 Fault Test</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-0-3 LCD Test</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-0-4 --------</td>
</tr>
<tr>
<td>Zero adjustment</td>
<td>2-1</td>
<td>Perform</td>
<td>the zero adjustment</td>
</tr>
<tr>
<td>Span adjustment</td>
<td>2-2</td>
<td>Perform</td>
<td>the span adjustment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>--------</td>
</tr>
<tr>
<td>Environmental</td>
<td>2-4</td>
<td>Used for</td>
<td>various environmental settings.</td>
</tr>
<tr>
<td>setting</td>
<td></td>
<td></td>
<td>2-4-0-----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4-1 INHIBIT Setting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4-2 Alarm Setpoint Setting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4-3 Alarm Delay Time Setting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4-4 Alarm Pattern Setting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4-5 Zero Suppression Type Setting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4-6 Zero Suppression Value Setting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4-7-----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4-8-----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4-9 Zero Follower Selection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4-A Maintenance Mode External Output Setting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4-B External Output Adjustment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4-C Alarm Test External Output Setting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4-D Sensor Operation Start Setting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4-E-----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4-F-----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4-G Alarm Limiter Setting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4-J Sensitivity Correction Setting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4-K Date/Time Setting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4-M-----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-4-N Fault External Output Setting</td>
</tr>
<tr>
<td>Display</td>
<td>2-5</td>
<td>Display</td>
<td>various electrical settings. This is not used by the user.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>--------</td>
</tr>
<tr>
<td>Switch to factory</td>
<td>2-6</td>
<td>Not used.</td>
<td>mode Option</td>
</tr>
<tr>
<td>Switch to user</td>
<td>2-7</td>
<td>Return to</td>
<td>user mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mode Option</td>
<td></td>
</tr>
</tbody>
</table>
5-5. Detection Mode

5-5-1. Display Operation

The operation status of the detector is displayed on the LCD.

Preparation

↓

Power-on

↓

Initial clear (approx. 25 seconds)

↓

Detection mode

In the detection mode, the sampling gas concentration is displayed on the LCD.

LCD display (Example: Gas to be detected: CO)

Normal display (description)

Name of the gas to be detected

Detected gas concentration

Operation status (Blinking: Normal)

Unit

Gas alarm display

When a gas concentration exceeds the preset alarm setpoint, the gas alarm display appears and an alarm message (AL1 or AL2) is displayed in the lower left side on the display.
NOTE
See "8. Troubleshooting" for remedial actions to fault display.

Negative value display

The "-0" display is shown when the zero level drops to the negative (-) side by 10% or more of the full scale.

WARNING

Accurate gas detection cannot be performed with the negative value display. In this case, perform zero adjustment.

Fault Display

If a fault occurs on the detector, the fault detail is displayed on the LCD.

(LCD display) (Fault detail)
E-9 System abnormalities
E-1 Sensor not connected/Sensor disconnection
5-5-2. External Output Operation (4-20 mA Transmission)

(1) Signal transmission method : Electric current transmission (non-isolated)
(2) Transmission path : CVVS 2c 1.25 sq
(3) Transmission distance : 1000 m or less
(4) Connection load resistance : 300 Ω or less
(5) Status signal level
 1. Detection mode : 4.0 - 20.0 mA (depends on the gas concentration)
 2. Initial clear : 4.0 mA
 3. Maintenance mode : 4.0 mA or lower
 4. External output test : 4.0 - 20.0 mA (varies with the test value)
 5. Fault state : 3.5 mA
 6. Power off : 0.0 mA

The following figure shows the relation between "gas concentration" and "external output".

CAUTION
The 4 - 20 mA output is adjusted. If readjustment for 4-20mA is needed after installation, it must be done by a qualified service engineer.
5-6. User Mode

5-6-1. Description

Press and hold MODE for three seconds while in Detection Mode to access User Mode.
Press and hold MODE for three second while in User Mode to return to Detection Mode.
The instrument will automatically return to Detection Mode 10 hours after the last button press.

- 4.0 - 20.0 mA: 4.0 mA

![4.0 - 20.0 mA: 4.0 mA]

Press and hold MODE for 3 seconds

Entering User Mode

WARNING
The external output signal (gas concentration signal) is 4.0 mA (normal state) while in User Mode.

1-1. Zero Adjustment

Select with ▲/▼ switch

1-3. Maintenance Mode access
5-6-2. Zero Adjustment

This is used to perform the zero adjustment.

NOTE
- If the zero calibration fails, it returns to 1-1 after FAIL is displayed. In this case, the zero adjustment has not been completed.

1. From Detection Mode, press and hold MODE for three second to enter User Mode.

2. With "1-1. ZERO" displayed, press and release SET.

3. Introduce a zero adjustment gas. When the reading is stable, press and release SET. The display blinks and the zero adjustment is performed.

4. Press and release SET to confirm the setpoint.

5. Press and hold MODE for three seconds to return to Detection Mode.

WARNING
Do not turn off the power until PASS disappears.

When the process ends normally, the LCD displays PASS and then goes to "1-1. ZERO" screen.

WARNING
After the adjustment is completed, be sure to press and hold MODE to return to Detection Mode.

CAUTION
If the unit remains in User Mode, it automatically returns to Detection Mode ten hours after the last button press.
5-6-3. External Output Test

This is used to check the transmission status by outputting a signal equivalent to gas concentration to the external device.

WARNING

Before starting the external output test (transmission test), notify related sections so that they can prepare for a false alarm.

(1) From Detection Mode, press and hold MODE for three seconds to enter User Mode.

(2) With "1-3. M MODE" displayed, press and release SET.

(3) Hold SET while "----" is displayed to enter Maintenance Mode.

(4) With "2-0 TEST" displayed, press and release SET.

(5) With "2-0-1. ALM TEST" displayed, press and release SET.

(6) Increase the reading with the ▲/▼ switch to check the transmission status. When the test is completed, press and hold MODE for three seconds to return to "2-0 TEST".

(7) With "2-0 TEST" displayed, press and hold MODE for three seconds to return to Detection Mode.
5-7. Power-Off

To turn off the detector, turn off the power switch located on the left side of the power terminal plate. Then, turn off the power supply (24 VDC) to the detector.

WARNING

Before turning off the detector, decide whether the power can be turned off by checking the operation of the devices connected to the external output of the detector.
The detector is an important safety instrument. To maintain the performance and reliability of the detector, perform regular maintenance. Continuing to use the detector without performing maintenance might cause sensitivity degradation, resulting in inaccurate detection.

6-1. Maintenance Intervals and Items

- **Daily maintenance**: Perform maintenance before beginning to work.
- **Monthly maintenance**: Perform maintenance once a month.
- **Regular maintenance**: Perform maintenance once or more for every six months to maintain the performance as a safety unit.

<table>
<thead>
<tr>
<th>Maintenance item</th>
<th>Maintenance content</th>
<th>Daily maintenance</th>
<th>Monthly maintenance</th>
<th>Regular maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status display check</td>
<td>Check that the status indicates normal measurement state.</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Gas concentration display</td>
<td>Check that a gas to be detected is not present around the detector and that the reading indicates a normal value.</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Alarm test*</td>
<td>Inspect the alarm circuit by using the alarm test function.</td>
<td>—</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Span adjustment</td>
<td>Perform the span adjustment using calibration gas.</td>
<td>—</td>
<td>—</td>
<td>○</td>
</tr>
<tr>
<td>Gas alarm check</td>
<td>Check the gas alarm using calibration gas.</td>
<td>—</td>
<td>—</td>
<td>○</td>
</tr>
</tbody>
</table>

*Check and adjustment are performed at the indicator/alarm unit side. See the operating manual of the indicator/alarm unit for details.
6-2. Zero Calibration

NOTE: If your GD-K88Ai is sampling a fresh air environment (environment free of combustible and toxic gases and of normal oxygen concentration, 20.9%), you do not need to use a zero air cylinder to introduce fresh air.

<Materials>
- 0.5 LPM fixed flow regulator with on/off knob
- Calibration cup
- Calibration tubing
- Zero air cylinder

<Zero Air Gas Application Time>
The table below outlines how long to let calibration gas flow for each target gas.

<table>
<thead>
<tr>
<th>Target Gas</th>
<th>Calibration Gas Application Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl2</td>
<td>2 minutes</td>
</tr>
<tr>
<td>CO</td>
<td>1 minute</td>
</tr>
<tr>
<td>H2O2</td>
<td>2 minutes</td>
</tr>
<tr>
<td>HCl</td>
<td>2 minutes</td>
</tr>
<tr>
<td>H2S</td>
<td>2 minutes</td>
</tr>
<tr>
<td>NH3</td>
<td>3 minutes</td>
</tr>
<tr>
<td>NO</td>
<td>1 minute</td>
</tr>
<tr>
<td>NO2</td>
<td>1 minute</td>
</tr>
<tr>
<td>Si2H6</td>
<td>2 minutes</td>
</tr>
<tr>
<td>SiH4</td>
<td>2 minutes</td>
</tr>
<tr>
<td>SO2</td>
<td>2 minutes</td>
</tr>
</tbody>
</table>

<Procedure>
1. From Detection Mode, press and hold MODE for three seconds to enter User Mode.
2. Use ▲/▼ to navigate to “1-3 M. MODE”.
4. Hold SET while "----" is displayed to enter Maintenance Mode.
5. With “2-0 TEST” displayed, use ▲/▼ to navigate to “2-1 ZERO”.
6. With "2-1 ZERO" displayed, press and release SET.
7. Install the calibration cup onto the sensor.
8. Screw the 0.5 LPM regulator onto the zero air cylinder.
9. Connect the regulator to the calibration cup inlet with tubing.
10. Turn the regulator knob counterclockwise to open it.
11. Let zero air flow for the time listed in the table above.
12. When the reading is stable, press and release SET. The display blinks and the zero adjustment is performed.
13. Press and release SET again to save the adjustment.
14. Turn the regulator knob clockwise to close it.
15. Remove the calibration cup from the sensor.
6-3. Span Calibration

<Materials>
- 0.5 LPM fixed flow regulator with on/off knob
- Calibration cup
- Calibration tubing
- Calibration cylinder

<Calibration Gas Application Time>
The table below outlines how long to let calibration gas flow for each target gas.

<table>
<thead>
<tr>
<th>Target Gas</th>
<th>Calibration Gas Application Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl₂</td>
<td>2 minutes</td>
</tr>
<tr>
<td>CO</td>
<td>1 minute</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>2 minutes</td>
</tr>
<tr>
<td>HCl</td>
<td>2 minutes</td>
</tr>
<tr>
<td>H₂S</td>
<td>2 minutes</td>
</tr>
<tr>
<td>NH₃</td>
<td>3 minutes</td>
</tr>
<tr>
<td>NO</td>
<td>1 minute</td>
</tr>
<tr>
<td>NO₂</td>
<td>1 minute</td>
</tr>
<tr>
<td>Si₂H₆</td>
<td>2 minutes</td>
</tr>
<tr>
<td>SiH₄</td>
<td>2 minutes</td>
</tr>
<tr>
<td>SO₂</td>
<td>2 minutes</td>
</tr>
</tbody>
</table>

<Procedure>
1. From Detection Mode, press and hold MODE for three seconds to enter User Mode.
2. Use ▲/▼ to navigate to “1-3. M. MODE”.
4. Hold SET while “----” is displayed to enter Maintenance Mode.
5. With “2-0 TEST” displayed, use ▲/▼ to navigate to “2-2 SPAN”.
6. With ”2-2 SPAN” displayed, press and release SET.
7. Install the calibration cup onto the sensor.
8. Connect the regulator to the calibration cup inlet with tubing.
9. For toxic gas cylinders, like Cl₂, it is important to vent the regulator while installing it onto the cylinder.
 Venting the regulator during installation helps prevent air from getting into the cylinder and degrading the gas. Open the regulator by turning the knob counterclockwise and install it onto the cylinder.
10. Let calibration gas flow for the time listed in the table above.
11. Press ▲/▼ until the reading on the display matches the concentration listed on your calibration cylinder.
12. Press and release SET. The reading will start to flash.
13. Press and release SET again to save the adjustment.
14. Turn the regulator knob clockwise to close it.
15. Remove the calibration cup from the sensor.
6-4. Replacing Parts

<Replacing the Gas Sensor>

NOTE

- If adjustment to the standard gas concentration value fails even with the maximum sensitivity, it indicates that the gas sensor has come to the end of its life. The gas sensor needs to be replaced.
- After replacing the gas sensor, electrical adjustment and calibration using the standard gas are necessary.

1. Open the housing door.
2. Unscrew the 2 screws that hold the sensor unit in place.
3. Pull the sensor unit away from the main unit.

Do not contact LCD cable with plate.

Loosen two door drop off prevention screws.

Sensor unit
4. Unscrew and remove the AMP board and the sensor mounting plate from the old sensor.

5. Install the AMP board and sensor mounting plate to the new sensor.
6. Reinstall the sensor unit to the main unit.
7. Calibrate the sensor as described on page 30.
8. Replace the backup battery as described below.

<Replacing the Battery>
1. Open the housing door.
2. Remove the old AAA battery from the battery holder.
3. Install a new AAA battery in the AA battery spacer and reinstall it into the main board.
7
Storage, Relocation, and Disposal

7-1. Procedures to Store the Detector or Leave it for a Long Time

The detector must be stored under the following environmental conditions.
- In a dark place under the normal temperature and humidity away from direct sunlight
- In a place where gases, solvents or vapors are not present

7-2. Procedures to Relocate the Detector or Use it Again

When the detector is relocated, select a new place in accordance with "4-2. Precautions for installation sites" and "4-4. How to install". For information on wiring work, see "4-6. How to wire" and "4-7. Compatible cables and terminal plate specifications". The unpowered time must be minimized when the detector is relocated.

CAUTION
Perform a calibration when using detector again after relocation or long-term storage.

7-3. Disposal

When the detector is disposed of, it must be treated properly as an industrial waste in accordance with the local regulations.
The troubleshooting guide explains the most frequent detector malfunctions but does not explain all detector malfunctions. If the detector shows a symptom which is not explained in this manual, or still has malfunctions even though remedial actions are taken, please contact RKI.

<Abnormalities on Unit>

<table>
<thead>
<tr>
<th>Symptom/Display</th>
<th>FAULT</th>
<th>Causes</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>The power</td>
<td>The wiring is not</td>
<td>Connect the wiring properly.</td>
<td></td>
</tr>
<tr>
<td>cannot be turned</td>
<td>correct.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>on.</td>
<td>The terminal plate is</td>
<td>Connect the terminal plate properly.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>removed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abnormalities</td>
<td>Abnormalities/moment</td>
<td>Provide the rated voltage.</td>
<td>Take measures such as checking or adding the UPS, power supply line</td>
</tr>
<tr>
<td>(open circuit/</td>
<td>ary blackout of power</td>
<td></td>
<td>filter and insulation transformer.</td>
</tr>
<tr>
<td>not connected/</td>
<td>supply system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>short circuit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable abnormalities</td>
<td>Check the wiring of</td>
<td>Check the wiring of detector and related devices around it.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>detector and related</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>devices around it.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abnormal</td>
<td>Disturbances by sudden</td>
<td>Turn off and restart the alarm system.</td>
<td>If such a symptom is observed frequently, take appropriate measures to</td>
</tr>
<tr>
<td>operations</td>
<td>surge noise, etc.</td>
<td></td>
<td>eliminate the noise.</td>
</tr>
<tr>
<td>System abnormalities</td>
<td>Abnormalities of ROM,</td>
<td>Please contact RKI.</td>
<td></td>
</tr>
<tr>
<td>E-9</td>
<td>RAM or EEPROM inside</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor</td>
<td>The sensor is not</td>
<td>Check if the sensor cable is securely fastened to the terminal plate.</td>
<td></td>
</tr>
<tr>
<td>abnormalities</td>
<td>connected or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-1</td>
<td>improperly connected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Faults of the sensor</td>
<td></td>
<td>Please contact RKI.</td>
</tr>
</tbody>
</table>
<Abnormalities of Readings>
* Take remedial actions to indicator/alarm unit as well. See the operating manual of the indicator/alarm unit for details.

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Causes</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>The reading rises (drops) and does not go back.</td>
<td>Drifting of sensor output</td>
<td>Perform zero adjustment.</td>
</tr>
<tr>
<td></td>
<td>Presence of interference gas</td>
<td>It is difficult to eliminate interference gases, such as solvents completely. Please contact RKI to arrange removal filters.</td>
</tr>
<tr>
<td></td>
<td>Slow leak</td>
<td>A very small amount of the gas to be detected may be leaking (slow leak). Because ignoring it may cause dangers, take a remedial measure, i.e., taking actions the same as those for the gas alarm.</td>
</tr>
<tr>
<td></td>
<td>Environmental changes</td>
<td>Perform zero adjustment.</td>
</tr>
<tr>
<td>A gas alarm is triggered despite of no gas leak and no other abnormalities at the detection point.</td>
<td>Presence of interference gas</td>
<td>It is difficult to eliminate interference gases, such as solvents completely. Please contact RKI to arrange removal filters.</td>
</tr>
<tr>
<td></td>
<td>Disturbance by noise</td>
<td>Turn off and restart the alarm system. If such a symptom is observed frequently, take appropriate measures to eliminate the noise.</td>
</tr>
<tr>
<td></td>
<td>Sudden change in the environment</td>
<td>When the environment (temperature, etc.) changes suddenly, the detector cannot adjust to it and is affected by it. In some cases, the detector triggers an indication alarm. Because the detector cannot be used under sudden and frequent environmental changes, any preventive actions to eliminate them should be taken by the user.</td>
</tr>
<tr>
<td>Slow response</td>
<td>Deteriorated sensor sensitivity</td>
<td>Replace the sensor with a new one.</td>
</tr>
<tr>
<td>Span adjustment impossible</td>
<td>Improper calibration gas concentration</td>
<td>Use the proper calibration gas.</td>
</tr>
<tr>
<td></td>
<td>Deteriorated sensor sensitivity</td>
<td>Replace the sensor with a new one.</td>
</tr>
</tbody>
</table>
Product Specifications

9-1. List of Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection principle</td>
<td>Electrochemical type</td>
</tr>
<tr>
<td>Gas to be detected</td>
<td>Toxic and combustible gases</td>
</tr>
<tr>
<td>Concentration display</td>
<td>7-segment LCD (4 digits)</td>
</tr>
<tr>
<td>Detection range</td>
<td>Depends on the gas to be detected</td>
</tr>
<tr>
<td>Detection method</td>
<td>Diffusion type</td>
</tr>
<tr>
<td>Transmission method</td>
<td>2-wire analog transmission</td>
</tr>
<tr>
<td>Transmission specifications</td>
<td>4 - 20 mA DC (load resistance: 300 Ω or less)</td>
</tr>
<tr>
<td>Power supply</td>
<td>15 - 27 VDC</td>
</tr>
<tr>
<td>Transmission cable</td>
<td>Shielded cable of CVVS, etc. (1.25 sq) - 2-core</td>
</tr>
<tr>
<td>Transmission distance</td>
<td>Up to 1 km with CVVS 1.25 sq (up to 600 m between the detector head and Zener Barrier)</td>
</tr>
<tr>
<td>Safety maintaining device*1</td>
<td>Zener Barrier (MTL728ac/MTL728+/MTL728-) or insulating barrier (MTL5541/RN-221N-EJ/KFD2-SCD-EX1.LK)</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>0 - 40°C</td>
</tr>
<tr>
<td>Operating humidities</td>
<td>30 - 70%RH (Non-condensing.)</td>
</tr>
<tr>
<td>Structure</td>
<td>Box type/Wall mounted type</td>
</tr>
<tr>
<td>Explosion-proof structure</td>
<td>Intrinsically safe explosion-proof structure, with safety maintaining device (barrier) used</td>
</tr>
<tr>
<td>Explosion-proof class</td>
<td>ExiaIICT4</td>
</tr>
<tr>
<td>Explosion-proof certification number</td>
<td>TC20741</td>
</tr>
<tr>
<td>External dimensions</td>
<td>Approx. 100 (W) x 241 (H) x 48 (D) mm (projection portions excluded)</td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 1.0 kg</td>
</tr>
<tr>
<td>Outer color</td>
<td>Munsell 2.5Y9/2</td>
</tr>
<tr>
<td>Paint</td>
<td>Bake-coated with melamine</td>
</tr>
</tbody>
</table>

* Specifications subject to changes without notice.

*1 Recommended item
9-2. Detection Principle

An electrochemical type sensor electrolyzes a gas directly while maintaining the interface between electrode and electrolyte at a constant potential (bias voltage). A gas is electrolyzed by an electrolysis cell to which a certain potential (bias voltage) is applied, and the gas is detected from the electrolytic current generated at that time.

WE: Working electrode
CE: Counter electrode

Output

Potentiostat circuit
10 Definition of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrochemical type</td>
<td>This is a principle of the sensor installed in the detector head. See "9-2. Detection principle" for details.</td>
</tr>
<tr>
<td>Initial clear</td>
<td>Output from the detector head fluctuates for a while after turning on the power. This is a function to prevent triggering alarm during that time.</td>
</tr>
<tr>
<td>Full scale</td>
<td>Maximum value of the detection range.</td>
</tr>
<tr>
<td>ppm</td>
<td>A concentration unit that means part per million of gas to be detected.</td>
</tr>
<tr>
<td>Calibration</td>
<td>Adjusts the readings to the calibration gas concentration value by using the calibration gas.</td>
</tr>
</tbody>
</table>
Parts List

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>06-1248RK</td>
<td>Calibration kit tubing (3/16 in. x 5/16 in.; specify length when ordering)</td>
</tr>
<tr>
<td>81-1114RK</td>
<td>Calibration cup</td>
</tr>
<tr>
<td>ESM-23-CO-300</td>
<td>Replacement sensor, 0 – 300 ppm CO</td>
</tr>
<tr>
<td>ESM-237-H2S</td>
<td>Replacement sensor, 0 – 30 ppm H2S</td>
</tr>
<tr>
<td>ESM-238-SO2</td>
<td>Replacement sensor, 0 – 6.00 ppm SO2</td>
</tr>
<tr>
<td>ESM-23A-NO</td>
<td>Replacement sensor, 0 – 100 ppm NO</td>
</tr>
<tr>
<td>ESM-23AH-NO2</td>
<td>Replacement sensor, 0 – 15.0 ppm NO2</td>
</tr>
<tr>
<td>ESM-23AH-PH3</td>
<td>Replacement sensor, 0 – 15.0 ppm PH3</td>
</tr>
<tr>
<td>ESM-23AH-SIH4</td>
<td>Replacement sensor, 0 – 15.0 ppm SiH4</td>
</tr>
<tr>
<td>ESM-23DH-H2O2</td>
<td>Replacement sensor, 0 – 3.00 ppm H2O2</td>
</tr>
<tr>
<td>ESM-23DH-SI2H6</td>
<td>Replacement sensor, 0 – 15.0 ppm Si2H6</td>
</tr>
<tr>
<td>ESM-23E-SO2</td>
<td>Replacement sensor, 0 – 30.0 ppm SO2</td>
</tr>
<tr>
<td>ESM-23R-NH3</td>
<td>Replacement sensor, 0 – 75.0 ppm NH3</td>
</tr>
<tr>
<td>ESM-K233-CL2</td>
<td>Replacement sensor, 0 – 3.00 ppm Cl2</td>
</tr>
<tr>
<td>ESM-K235-CL2-10</td>
<td>Replacement sensor, 0 – 10.0 ppm Cl2</td>
</tr>
</tbody>
</table>